

PAPER ID-411830

Roll No:

Subject Code: KME301

BTECH

(SEM III) THEORY EXAMINATION 2021-22

THERMODYNAMICS

Time: 3 Hours

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	CO	
Q1(a)	Q1(a) Differentiate microscopic and macroscopic point of view.				
Q1(b)	Q1(b) Define the quasi static process?				
Q1(c)	Q1(c) Define the second law efficiency and why PMM-II is not possible.				
Q1(d)	Distinguisl	between high grade energy and low-grade energy?		2	
Q1(e)	Q1(e) Explain the Joule-Thompson coefficient and Inversion curve?				
Q1(f)	Q1(f) Discuss the triple point and critical point.			4	
Q1(g)	Define the	refrigeration effect and how it can be improved?		5	
Q1(h)	Explain the	e dryness fraction and how it can be improved?		4	
Q1(i)	How the C	.O.P of the vapor compression cycle can be improved?		5	
Q1(j)	Differentia	te between available and unavailable energy?		3	

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	A nozzle i	s a device for increasing the velocity of a steadily flowing	g stream. At the inlet to a	1
	certain nozzle, the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At			
	the discha	rge end, the enthalpy is 2762 kJ/kg. The nozzle is	horizontal and there is	
	negligible heat loss from it.			Ň
	(i) Find the velocity at exists from the nozzle.			$\left(\right)$
	(ii) If the i	nlet area is 0.1 m2 and the specific volume at inlet is 0.1	87 m3/kg, find the mass	
	flow rate.			
Q2(b)	A heat pur	np working on the Carnot cycle takes in heat from a reser	voir at 5°C and delivers	2
	heat to a re	servoir at 60°C. The heat pump is driven by a reversible	heat engine which takes	
	in heat from	n a reservoir at 840°C and rejects heat to a reservoir at 60)°C. The reversible heat	
	engine also	drives a machine that absorbs 30 kW. If the heat pump e	extracts 17 kJ/s from the	
	5°C reserv	oir, determine		
	(i) The rate	e of heat supply from the 840°C source		
	(ii) The rate of heat rejection to the 60°C sink.			
Q2(c)	c) Write down the first and second T-dS equations and derive the expression for the difference			3
	in heat capacities, Cp and Cv.			
Q2(d)	1) Define in pure substance by suitable phase change diagram the term (i) Triple Point (ii)			4
	Critical Point (iii) Saturation states (iv) Sub cooled state (v) Superheated vapour state.			
Q2(e)) The atmospheric air pressure 1 bar and temperature -5° C is drawn in the cylinder of the		5	
	compressor of Bell Coleman refrigerating machine. It is compressed isentropically to a			
	pressure of 5 bar. In the cooler the compressed air is cooled to 15 ^o C, pressure remaining the			
	same. It is then expanded to a pressure of 1 bar in an expansion cylinder from where it is			
	passed to the cold chamber. Calculate			
	(i)The wo	rk done per kg of air		
	(ii) C.O.I	P of the plant		
	For air assume law for expansion $PV^{1,2}$ =Constant:			
	law for compression is $PV^{1.4}$ =Constant			
	specific he	at of the air at constant pressure is 1 KJ/Kg-K		
SECT	TION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
$O_3(a)$	The intern	al energy of a certain substance is given by the following	equation	1

Q3(a)	The internal energy of a certain substance is given by the following equation	1
	u=3.56 pv + 84, where u is given in KJ/Kg, P is in KPa and v is in m^{3}/kg	
	A system composed of 3 kg of this substance expands from an initial pressure of 500 KPa	
	and a volume of 0.22 m ³ to a final pressure 100 KPa in a process in which pressure and	
	volume are related by	
	PV ^{1.2} =Constant	

BTECH

Roll No:

(SEM III) THEORY EXAMINATION 2021-22 THERMODYNAMICS

	i.	If the expansion is quasi static find $Q,\Delta U$ and W for the process		
	ii.	In another process the same expands according to the same pressure -volume		
	relationship as in part (i) and from the same initial state to the same final state as in			
	part (i), but the heat transfer in this case is 30 KJ. Find the work transfer for this			
	process.			
	iii.	Explain the difference in work transfer in parts (i) and (ii)		
Q3(b)	For a s	ample of air having 22 ⁰ DBT, relative humidity 30 % at barometric pressure of 760	4	
mm of Hg calculate (i) Vapour pressure				
	(ii) Humidity ratio. (iii) Vapour density and (iv) Enthalpy			
	Verify	yours results by psychometric chart.		

SECT	ION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q4(a)	Steam at 20 bar 360° C is expanded in a steam turbine to 0	.08 bar. It then enters a	4	
	condenser, where it is condensed to a saturated liquid water. The p	oump feeds back the water		
	in to the boiler (i) Assuming ideal processes, find the per kg of steams of the network and			
	the cycle efficiency (ii) If the turbine and the pump have each 80% efficiency ,find the			
	percentage reduction in the network and cycle efficiency.			
Q4(b)	Prove that :		3	
	$C_P - C_v = -T(\partial V / \partial T)^2_p (\partial P / \partial V)_T$			

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q5(a)	State the	Clapeyron equation and discuss its importance during	g phase change of pure	3	
	substance.	Derive the equation for Clausius-Clapeyron equation for	evaporation of liquids.	$\mathbf{\mathcal{D}}$	
Q5(b)	5(b) A vapour compression refrigeration system uses R-12 refrigerant, and the liquid evaporates 5				
	in the evaporator at -15° C. The Temperature of this refrigerant at the delivery from the				
	compressor is 15 °C when the vapour is condensed at 10°C. Find the coefficient of				
	performance (i) If there is no under cooling and (ii) the liquid is cooled by 5°C before				
	expansion	by throttling.			
	-	G			

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO		
Q6(a) Draw a	neat diagram of lithium bromide water absorption system ar	d explain its working.	5		
List the	major field of applications of this system.	•			
Q6(b) (i) One	kg of water at 273 K is brought in to contact with a heat rese	ervoir at 373 K When the	2		
water h	as reached 373 K, find the entropy change of the water of	the heat reservoir and of			
the unit	the universe				
(ii) If th	(ii) If the water is heated from 273 K to 373 K by firs bringing				
It in c	It in contact with a reservoir at 323 K and then with a reservoir at 373 K, what will the				
opy cha	opy change of the universe be?				
(iii) Ex	(iii) Explain how water might be heated from 273 to 373 K with almost no change in the				
opy of	he universe.				

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q7(a)	Q7(a) A gas undergoes a thermodynamic cycle consisting of the following			1
	(i)	Process 1-2 is isochoric heat addition of 325.235 KJ/kg		
	(ii) Process 2-3 adiabatic expansion to its original pressure with loss of 70 KJ/kg in			
	internal energy			
	(iii)	(iii) Process 3-1 isobaric compression to its original volume with heat rejection of 200		
	KJ/kg			
		Prepare a balance sheet of energy quantities and find the ov	verall changes during the	
		cycle		
Q7(b) Show that the Kelvin–Planck and the Clausius statement of the second law of			2	
	thermod	ynamics are equivalent.		