B TECH
 (SEM-III) THEORY EXAMINATION 2020-21 THERMODYNAMICS

Time: 3 Hours
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
SECTION A
1.

Q no.	Attempt all questions in brief.	$\mathbf{2 x 1 0 =} \mathbf{2 0}$	
a.	Differentiate between MACROSCOPIC \& MICROSCOPIC Viewpoint?	Marks	CO
b.	What do you mean by reversible process? What are the conditions which must be satisfied by the process during reversible process?	2	CO1
c.	Write down the Statement of third law of thermodynamics.	CO1	
d.	Define principle of entropy increase.	2	CO2
e.	What do you understand by Effectiveness and Irreversibility?	2	CO2
f.	Explain Adiabatic and Isothermal compressibility.	2	CO3
g.	What do you understand by Sensible heat and Latent heat of vaporization?	2	CO3
h.	Determine the dryness fraction of steam of 1 kg of water is in suspension with $39 k g$ of dry steam.	2	CO4
i.	Write down the properties of refrigerant.	2	CO5
j.	What is Bell Coleman cycle?	2	CO5

SECTION B

2. Attempt any three of the following:

Q no.	Question	Marks	CO
a.	A mass of 8 kg gas expands within a flexible container so that the $p-v$ relationship is of the from $p v^{1.2}=$ constant, The initial pressure is 1000 kPa and the initial volume is $1 \mathrm{~m} 3 . ~ T h e ~ f i n a l ~ p r e s s u r e ~ i s ~$ energy of the gas decreases by $40 \mathrm{~kJ} / \mathrm{kg}$, find the heat transfer in magnitude and direction.	10	CO 1
b.	Derive an expression for thermal efficiency of Carnot Engine		

SECTION C

3. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	A turbo compressor delivers $2.33 \mathrm{~m} 3 / \mathrm{s}$ at $0.276 \mathrm{MPa}, 43^{\circ} \mathrm{C}$ which is heated at this pressure to $430^{\circ} \mathrm{C}$ and finally expanded in a turbine which delivers 1860 kW. During the expansion, there is a heat transfer of $0.09 \mathrm{MJ} / \mathrm{s}$ to the surroundings. Calculate the turbine exhaust temperature if changes in kinetic and potential energy are negligible.	CO	
b.	One kg of air at 10 becomes 5 times the original pressure. Subsequently it is expanded at constant pressure and finally cooled at constant volume to return to its original state. Calculate the heat and work interactions, and change in internal energy for each process and for the cycle	10	$\mathrm{CO1}$

4. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	A heat engine is used to drive a heat pump. The heat transfers from the heat engine and from the heat pump are used to heat the water circulating through the radiators of a building. The efficiency of the heat engine is 27% and the COP of the heat pump is 4. Evaluate the ratio of the heat transfer to the circulating water to the heat transfer to the heat engine.	10	CO 2
b.	To check the validity of the second law, m_{1} kg of water at absolute temperature T_{1} is isobarically mixed and adiabatically mixed with m_{2} kg of water at absolute temperature T_{2}. Find the change in entropy of the Universe. Deduce the expression if the masses of water mixed are equal to m and show that the mixing process is irreversible. Specific heat of water is S_{w}. Assume, $\mathrm{T}_{1}>\mathrm{T}_{2}$	10	CO

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Air flows through an adiabatic compressor at 2 kg/s. The inlet conditions are 1 bar and 310 K and the exit conditions are 7 bar and 560 K. Compute the net rate of availability transfer and the irreversibility. Take $T 0=298 \mathrm{~K}$.	10	CO 3
b.	Derive Clausius - Clapeyron equation	10	CO 3

6. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Steam at 20 bar and $360^{\circ} \mathrm{C}$ is expanded in a steam turbine to 0.08 bar. It then enters a condenser, where is condensed to saturated liquid water. The pump feeds back the water into the boiler. i) Assuming ideal processes, find per kg of steam, the network, and the cycle efficiency. ii) If the turbine and the pump have each 80% efficiency, find the percentage reduction in the network and cycle efficiency.	CO 4	
b.	Explain the components and working of steam power plant with help of schematic diagram.	10	CO 4

7. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Define all the processes happening in basic vapour compression refrigeration cycle with the help of p-v and T-S diagram.	10	CO5
b.	A standard vapour compression refrigerator using F-12 as the refrigerant operates between the condenser pressure of 10 bar and the evaporator pressure of 1.5 bar. The evaporator absorbs 75 KJ/min of energy as heat and the vapour is Dry saturated at exit from the compressor. Represent the cycle on T-S plane and calculate: - (i) flow rate of refrigerant, (ii) Power consumed. (iii) COP of the cycle.	CO5	

