

Roll No:

BTECH

(SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

Time: 3 Hours

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks(10X2=20)	
Q1(a)	Find the eigen value of A^3 where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.			
	Show that the system of vectors $X_1 = (1, -1, \), X_2 = (2, 1, \), and X_3 = (3, 0, 2)$ are linearly dependent or linearly independent.			1
Q1(c)	1) If $y = A \sin nx + B \cos nx$, prove that $y_2 + n^2 y = 0$.			2
Q1(d)	Find the asymptotes parallel to y-axis of the curve $\frac{a^2}{x} + \frac{b^2}{y} = 1.$			2
Q1(e)	If $x = r\cos\theta$, $y = r\sin\theta$, ind $\frac{\partial(r,\theta)}{\partial(x,y)}$.			3
	An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.			3
Q1(g)				4
Q1(h)	Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.			4
				5
Q1(j)	State Gree	en's theorem for a plane region.		5

SECT	ION-BAttempt ANY THREE of the following QuestionsMarks(3X10=30)	
Q2(a)	Find the eigen values and corresponding eigen vectors of $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	1
Q2(b)	Verify Rolle's theorem for the function $f(x) = \sqrt{4 - x^2}$ in [-2, 2].	
Q2(c)	Find the first six terms of the expansions of the function $e^x \log(1 + y)$ in a Taylor series in the neighborhood of the point $(0, 0)$.	
	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.	
Q2(e)	If a vector field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$ Is this field irrotational? If so, find its scalar potential.	5

SECTION-C Attempt ANY ONE following Question		Attempt ANY ONE following Question Marks (1X)	10=10)		
Q3(a)	Find for what values of λ and μ the system of linear inequation: $x + y + z = 6$,				
	$x + 2y + 5z = 10, 2x + 3y + \lambda z = \frac{1}{2} a_{s}(i)$ a unique solution, (ii) no solution,				
	(iii) infinite solution. Also find the solution for $\lambda = 2$ and $\mu = 8$.				
Q3(b)	Find the rank of matrix reducing it to normal form				
		[1 3 4 2]			
		$A = \begin{bmatrix} 2 & -1 & 3 & 2 \end{bmatrix}$			
		$A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$			
		L6 —3 8 6J			

Printed Page: 2 of 2 Subject Code: KAS103

BTECH (SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

SECT	TION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q4(a)	(a) If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate $y_n(0)$.			
Q4(b)	b) Verify mean value theorem for the function $f(x) = x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$.			
SECT	TION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	A rectangular box which is open at the top having capacity 32c.c.Find the dimension of the box such that the least material is required for its constructions.			3
Q5(b)	If u, v and $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.	w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3$	$= 0$, cubic in λ , find	3
SECT	TION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q6(a)	Find by double integration the area enclosed by the pair of curves $y = 2 - x$ and $y^2 = 2(2 - x)$			4
Q6(b)	Find C.G.	of the area in the positive quadrant of the curve $x^{\frac{2}{3}}$	$+y^{\frac{2}{3}}=a^{\frac{2}{3}}.$	4
SECT	TION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q7(a)	a) Find the directional derivative of $f(x, y, z) = xyz$ at the point $P(1, -1, 2)$ in the direction of the vector $(2i - 2j + 2k)$.			5
Q7(b)		bke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - 0$ = 0, y = 0, z = 0, x = 2, y = above=the2X0		5