

number.

1.

g.

h.

i.

j.

|          |  |  |  | , | Subj | ject | Cod | e: K | ME | 2501 |
|----------|--|--|--|---|------|------|-----|------|----|------|
| Roll No: |  |  |  |   |      |      |     |      |    |      |

Printed Page: 1 of 2

 $2 \times 10 = 20$ 

# B.TECH (SEM- V) THEORY EXAMINATION 2021-22 HEAT AND MASS TRANSFER

Time: 3 Hours Total Marks: 100

**Note: 1.** Attempt all Sections. If require any missing data; then choose suitably.

### **SECTION A**

|       | 11000 mp c dir questions in si iei.                                      | - 11 10 |    |
|-------|--------------------------------------------------------------------------|---------|----|
| Q no. | Question                                                                 | Marks   | СО |
| a.    | What is the difference between thermodynamics and heat transfer?         | 2       | 1  |
| b.    | How the thermal conductivity of material is defined? What are its units? | 2       | 1  |
| c.    | What is meant by transient heat conduction?                              | 2       | 2  |
| d.    | Explain effectiveness and efficiency of fin.                             | 2       | 2  |
| e.    | What is turbulent flow? Define it.                                       | 2       | 3  |
| f.    | Define Reynolds's number, also write the significance of Reynolds's      | 2       | 3  |

# Define Stefan Boltzmann's law. 2 4 Explain black body, opaque body, white body and grey body also. 2 4 How heat exchangers are classified? 2 5 What are the various modes of mass transfer? 2 5

## **SECTION B**

2. Attempt any three of the following:

Attempt all questions in brief.

|       | recempt any unce of the following.                                       |       | ( ) + |
|-------|--------------------------------------------------------------------------|-------|-------|
| Q no. | Question                                                                 | Marks | CO    |
| a.    | Drive an expression for heat conduction through a composite wall.        | 10    | 1     |
| b.    | It is required to heat oil to about 300°C for frying purpose. A ladle is | 10    | 2     |
|       | used in the frying. The section of the handle is 5 mm x 18 mm. the       | )     |       |
|       | surroundings are at 30°C. The conductivity of the material is 205        |       |       |
|       | W/m°C. If the temperature at a distance of 380 mm from the oil should    |       |       |
|       | not reach 40°C, Determine the convective heat transfer coefficient.      |       |       |
| c.    | Differentiate between:-                                                  | 10    | 3     |
|       | (i) Natural and forced convection.                                       |       |       |
|       | (ii) Hydrodynamic and thermal boundary layer thickness.                  |       |       |
| d.    | A 70 mm long circular surface of a circular hole of 35 mm diameter       | 10    | 4     |
|       | maintained at uniform temperature of 250°C. Find the loss of energy to   |       |       |
|       | the surroundings at 27°C, assuming the two ends of the hole to be as     |       |       |
|       | parallel discs and the metallic surfaces and surroundings have a black   |       |       |
|       | body characteristics.                                                    |       |       |
| e.    | Derive an expression for effectiveness by NTU method for parallel flow.  | 10    | 5     |
|       |                                                                          |       |       |

## **SECTION C**

3. Attempt any *one* part of the following:

| Q no. | Question                                                                              | Marks | CO |
|-------|---------------------------------------------------------------------------------------|-------|----|
| a.    | Derive a general heat conduction equation for Cartesian co-ordinate. And              | 10    | 1  |
|       | also draw the temperature-thickness profile for it.                                   |       |    |
| b.    | A mild steel tank of thickness 12 mm contains water at 95°C. The                      | 10    | 1  |
|       | thermal conductivity of mild steel is 50 W/m°C, and the heat transfer                 |       |    |
|       | coefficients for the inside and outside the tank are 2850 and 10 W/m <sup>2</sup> °C, |       |    |
|       | respectively. If the atmospheric temperature is 15 °C, calculate:                     |       |    |
|       | (i) The rate of heat loss per square meter of the tank surface area.                  |       |    |
|       | (ii) The temperature of the outside surface of the tank.                              |       |    |



|          |  |  |  | 1 | Subj | ject | Cod | e: K | ME | 50 |
|----------|--|--|--|---|------|------|-----|------|----|----|
| Roll No: |  |  |  |   |      |      |     |      |    |    |

Printed Page: 2 of 2

4. Attempt any *one* part of the following:

| Q no. | Question                                                                                                                                                                                                                                                                                                                                                                         | Marks | CO |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | An aluminium alloy plate of 400 mm x 400 mm x 4mm size at 200 °C is suddenly quenched into liquid oxygen at -183 °C. Starting from fundamentals or deriving the necessary expression to determine the time required for the plate to reach a temperature of -70 °C. Assume $h = 20000 \text{ KJ/m}^2  h$ °C, $c_p = 0.8 \text{ KJ/Kg}$ °C and density = 3000 Kg/m <sup>3</sup> . | 10    | 2  |
| b.    | Prove that for a body whose thermal resistance is zero, the temperature required for cooling or heating can be obtained from the relation $ (t\text{-}t_a)/(t_i\text{-}t_a) = exp[-B_iF_a] $ Where the symbols have their usual meanings.                                                                                                                                        | 10    | 2  |

5. Attempt any *one* part of the following:

| J.    | Attempt any one part of the following.                                                                            |                                        |     |
|-------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
| Q no. | Question                                                                                                          | Marks                                  | CO  |
| a.    | A nuclear reactor with its core constructed of parallel vertical plates of                                        | 10                                     | 3   |
|       | 2.2 m high and 1.4 m wide has been designed on free convection heating                                            |                                        |     |
|       | of liquid bismuth. The maximum temperature of the plate surface is                                                |                                        |     |
|       | limited to 960°C while the lowest allowable temperature of the bismuth                                            |                                        |     |
|       | is 340°C. Calculate the maximum possible heat dissipation from the both                                           |                                        |     |
|       | sides of each plate. For the convection coefficient for the plate is                                              |                                        |     |
|       | $Nu = 0.13 (Gr.Pr)^{0.333}$                                                                                       |                                        |     |
|       | Where different parameter are evaluated at the mean film temperature.                                             |                                        |     |
| b.    | Air at 20°C flowing over a flat plate which is 200 mm wide and 500                                                | 10                                     | 3 N |
|       | mm long. The plate is maintained at 100°C. Find the heat loss per                                                 |                                        | 9.  |
|       | hour from the plate f the air is flowing parallel to 500 mm side with 2                                           |                                        | XV  |
|       | m/s velocity. What will be the effect on heat transfer if the flow is                                             | 1                                      |     |
|       | parallel to 200 mm? The properties of air at $(100+20)/2 = 60$ °C are v                                           | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |     |
|       | $= 18.97 \times 10^{-6} \text{ m}^2/\text{s}, k = 0.025 \text{W/m}^{\circ}\text{C} \text{ and } \text{Pr} = 0.7.$ |                                        |     |

6. Attempt any *one* part of the following:

| Q no. | Question                                                                                                                                                                                                                                                                                                               | Marks | CO |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| a.    | Determine the radiant heat exchanger in W/ $m^2$ between two large parallel steel plates of emissivity's 0.8 and 0.5 held at temperature of 1000 k and 500k respectively, if a thin copper plate of emissivity 0.1 is introduced as a radiation shield between the two plates. Use $\sigma = 5.67*10^{-8}$ W/ $m^2k^4$ | 10    | 4  |
| b.    | Derive the expression for net heat exchange between black bodies for infinite parallel planes.                                                                                                                                                                                                                         | 10    | 4  |

7. Attempt any *one* part of the following:

|       | recempt any one part of the following.                                       |       |    |
|-------|------------------------------------------------------------------------------|-------|----|
| Q no. | Question                                                                     | Marks | CO |
| a.    | The flow rates of hot and cold water streams running through a parallel      | 10    | 5  |
|       | flow heat exchangers are 0.2 Kg/s and 0.5 Kg/s respectively the inlet a      |       |    |
|       | temperatures 75°c and 20°c respectively. The exit temperature of hot         |       |    |
|       | water is 45°c. If the individual heat transfer coefficient on both sides are |       |    |
|       | 650 W/m <sup>2</sup> °C. Calculate:                                          |       |    |
|       | (i) The area of heat exchanger.                                              |       |    |
|       | (ii) the rate of heat transfer                                               |       |    |
| b.    | Differentiate between the mechanisms of filmwise and dropwise                | 10    | 5  |
|       | condensation.                                                                |       |    |