

	Subject Code: KAS101											S101T	
Roll No:													

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

Note: Attempt all the sections. If require any missing data, then choose suitably.

Section A

1. Attempt all questions in brief:2 x 10 = 20

Q.N.	Question	Marks	СО
a.	Differentiate between inertial and non- inertial frames.	2	1
b.	Show that the rest mass of a photon is zero.	2	1
c.	Write the similarities and dissimilarities between conduction and	2	2
	displacement current.	_	_
d.	Define the Poynting vector and write its unit.	2	2
e.	State the Wien's displacement law.	2	3
f.	Distinguish between modified and unmodified x-rays.	2	3
g.	The light rays from two independent bulbs do not show interference.	2	4
	Give the reason.		
h.	State the Rayleigh criteria of resolution.	2	4
i.	What is an optical fibre? How does a light signal propagate through it?	2	5
j.	Write the essential requirements for the laser action.	2	5

Section B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Q.N.	Question	Marks	СО
a.	Show that $E^2=p^2c^2+m_0^2c^4$	10	1
b.	Find the skin depth $\delta atafrequencyof3.0x~10^6 Hzinaluminiumwhere \sigma = 38.0~x~10^6 S/m~and~\mu_r = 1.$	10	2
c.	An electron is bound in one dimensional potential box width 2.5×10^{-10} m. Assuming the height of the box to be infinite, calculate the lowest permitted energy values of the electron.	w it0 ch l	na36
d.	White light is incident on a soap film at an angle Sin ⁻¹ (4/5) and the reflected light is observed with a spectroscope. It is found that two consecutive dark bands correspond to wavelengths 6.1x10 ⁻⁵ cm and 6.0x10 ⁻⁵ cm. If the refractive index of the film is 4/3, calculate the thickness.	10	4
e.	A communication system uses a 10 km fiber having a loss of 2.5dB/km. Compute the output power if the input power is 500µW.	10	5

				Sub	oject	t Co	de: l	KAS	8101T
Roll No:									

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Section C

3. Attempt ant one of the following:

1 x 10 = 10

Printed Page: 2 of 2

Q.N.	Question	Marks	СО
a.	State the postulates of special theory of relativity and	d 40 ve th	e 1
	Lorentz transformation equations. When Lorentz transform	ation	
	equations get reduced to Galilean transformation equations?		
b.	State and prove the velocity addition theorem. Show	t l1.9 t th	e 1
	theorem is consistent with the Einstein's second postulate.		

4. Attempt any one of the following:

1 x 10 =10

Q.N.	Question	Marks	СО
а.	Establish the e-m waves' equations in free space and solve them to show that they travel with the speed of light in free space and are transverse in nature.	10	2
b.	State and prove the Poynting theorem. Show that E/H = 377 Ohm.	10	2

5. Attempt any one of the following:

1 x 10 =10

Q.N.	Question	Marks	СО
a.	What is the Planck's theory of black body radiations? Obtain an	10	3
	expression for the average energy of the oscillators and derive the		
	Planck's radiation law.		
b.	Write the Schrodinger's wave equation for a particle in one-	10	3
	dimensional box and solve it to obtain the eigen values and eigen		
	functions.		

6. Attempt any one of the following:

1 x 10 = 10

	. ,		
Q.N.	Question	Marks	CO
a.	What do you mean by a wedge-shaped film? Discuss the interference	10	4
	due to it and obtain the expression for the fringe width.		
b.	Discuss the formation of Newton's rings. Show that the diameters of	10	4
	the bright rings are proportional to the square root of odd natural		
	numbers.		

7. Attempt any one of the following:

1 x 10 = 10

Q.N.	Question	Marks	СО
a.	What do you mean by acceptance angle and numerical aperture?	10	5
	Derive the expressions for acceptance angle and numerical aperture.		
b.	What do you understand by the stimulated emission? Discuss the He-	10	5
	Ne laser by giving its construction and working. How He-Ne laser is		
	superior to the Ruby laser?		

Physical Constants: