Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHS-I

Time: 3 Hours

Total Marks: 70

 $2 \ge 7 = 14$

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

PAPER ID-411960

	$\sum d d d d d i f const d d f const - 2 n^2 X$	
a.	Find nth differential of $y = -2e^{-x}$.	
b.	Find the Jacobian $J\left(\frac{u,v}{x,y}\right)$ for $u = e^x \sin y$ and $v = x \log \sin y$.	
c.	Prove that matrix $\begin{bmatrix} (a + ic) & (-b + id) \\ (b + id) & (a - ic) \end{bmatrix}$ is unitary if $a^2 + b^2 + c^2 + d^2 = 1$	
d.	Find percent error in the area of an ellipse when an error of $+1\%$ is made in measuring its length of major and minor axis.	
e.	Write the formula for area by double integration in polar coordinates.	
f.	Examine the following vectors for linearly independent	
	$X_1 = [1, 2, -2], X_2 = [-1, 3, 0], X_3 = [0, -2, 1]$	
g.	Write formula for flux.	

SECTION B

2. Attempt any *three* of the following:

$7 \ge 3 = 21$

a.	Trace the curve $y^2(a+x) = x^2(a - x)$.		
b.	Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube		
c.	Find the Eigen values and corresponding Eigen vectors of the matrix $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$		
d.	Using Beta and Gamma function, evaluate $\int_{0}^{1} x^{5} (1 - x^{3})^{10} dx$		
e.	Verify Stoke's theorem for the field $\vec{F} = (2x - y)\hat{\imath} - yz^2\hat{\jmath} - y^2z\hat{k}$ taken over the upper half of the surface $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane.		

SECTION C

3. Attempt any *one* part of the following:

 $7 \ge 1 = 7$

b.	$u = log \frac{(x^2 + y^2)}{xy}$	
	\mathbf{V}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1} \mathbf{f}_{-1}	
a.	If $y = (\sin^{-1} x)^2$, Find $y_n(0)$	

4. Attempt any *one* part of the following:

7 x 1 = 7

5.

6.

7.

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHS-I

a.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ and hence find A ⁻¹ .		
	Solve the system of linear equations: - x + 2y - z = 3		
b.	3x - y + 2z = 1		
	2x - 2y + 3z = 2		
	x - y + z = -1		
Atter	npt any one part of the following: $7 \ge 1 = 7$		
a.	If u, v, w are the roots of the cubic equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ in λ , Find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$		
1.	Expand x^{y} in powers of $(x-1)$ and $(y-1)$ up to the third degree terms and hence		
Ο.	evaluate $(1.1)^{1.02}$.		
Atter	npt any one part of the following: $7 \ge 1 = 7$		
a.	Evaluate by change of variable, $\iint_{R} (x+y)^2 dx dy$ where R is the region		
	bounded by the parallelogram $x+y = 0$, $y = 2$, $3x-2y = 0$ and $3x-2y = 3$		
	Evaluate the integral $\iiint x^{l-1}y^{m-1}z^{n-1}dxdydz$ where x, y, z are all positive		
b.	but limited by the condition $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$		
Atter	Attempt any <i>one</i> part of the following: $7 \ge 1 = 7$		
a.	Show that the vector field $\overline{F} = \overline{r} / r^3$ is irrotational as well as solenoidal, where $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$.		
b.	Find $div\overline{F}$ and $curl\overline{F}$, where $\overline{F} = grad(x^3 + y^3 + z^3 - 3xyz)$		