

Printed Page: 1 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	
Q1(a)	If the matrix $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$, then find the eigen value of $A^3 + 5A + 8I$.	1
Q1(b)	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form and find its rank.	1
Q1(c)	Find the envelope of the family of straight line $y = mx + \frac{a}{m}$, where m is a parameter.	2
Q1(d)	Can mean value theorem be applied to $f(x) = \tan x$ in $[0, \pi]$.	2
Q1(e)	State Euler's Theorem on homogeneous function.	3
Q1(f)	Find the critical points of the function $f(x, y) = x^3 + y^3 - 3axy$.	3
Q1(g)	Find the area bounded by curve $y^2 = x$ and $x^2 = y$.	4
Q1(h)	Find the value of $\int_0^1 \int_0^x \int_0^{x+y} dx dy dz$.	4
Q1(i)	Find a unit normal vector to the surface $z^2 = x^2 + y^2$ at the point $(1, 0, -1)$.	5
Q1(j)	State Stoke's Theorem.	5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	
Q2(a)	Find the c	haracteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, con	inpute A^{-1} and $ = \begin{bmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{bmatrix}. $	1
		e's theorem and verify Rolle's theorem for the function $\frac{nx}{x^2}$ in $[0, \pi]$.	1	2
Q2(c)	If u, v and $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.	we are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 =$	0 , cubic in λ , find	3
Q2(d)	Find the v $z = 0$.	folume bounded by the cylinder $x^2 + y^2 = 4$ and the p	lane $y + z = 4$ and	4
Q2(e)		een's theorem to evaluate $\int_C [(2x^2 - y^2)dx + (x^2 + y^2)] dx$ of the area enclosed by the x-axis and the upper half of $x^2 + y^2 = a^2$.		5

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	
Q3(a)	Find the value of k for which the system of equations $(3k - 8)x + 3y + 3z = 0$,	1
	3x + (3k - 8)y + 3z = 0, $3x + 3y + (3k - 8)z = 0$ has a non-trivial solution.	
Q3(b)	[2 1 1]	1
	Find the eigen values and eigen vectors of matrix $A = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix}$.	
	[3 3 4]	

Printed Page: 2 of 2
Subject Code: KAS103T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHEMATICS-I

SECT	ION-C Attempt ANY ONE following Question Marks (1X	10=10)
Q4(a)	If $f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$; $x \neq \theta$ and $f(0) = 0$, then show that the function is continuous	ous 2
	but not differentiable at $x = 0$.	
Q4(b)	If $y = (x \sqrt{1 + x^2})^m$, find $y_n(0)$.	2

	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	Expand <i>x</i> evaluate (y in powers of $(x - 1)$ and $(y - 1)$ up to the third- $(1.1)^{1.02}$.	degree terms and hence	3
Q5(b)	A rectang dimension	ular box which is open at the top having capacity 32 of the box such that the least material is required for	c.c. Find the or its constructions.	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q6(a)	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.			4
		osition of the C.G. of a semicircular lamina of radiushe square of the distance from the diameter.	is, a if its density	4

SECT	ION-C Attempt ANY ONE following Question Marks (1X10=10)	
	Find the directional derivative of $\nabla(\nabla f)$ at the point $(1, -2, 1)$ in the direction of	5
	the normal to the surface $xy^2z = 3x + z^2$ where $f = 2x^3y^2z^4$.	
Q7(b)	Find the constants a , b , so that	5
	$\vec{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - \lambda)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational and hence	
	find function \emptyset such that $\vec{F} = \nabla \emptyset$.	