Printed Page: 1 of 3 Subject Code: NEC101

Roll No:

BTECH

(SEM I) THEORY EXAMINATION 2021-22 ELECTRONICS ENGG

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

$2 \ge 10 = 20$

Q no.	Question	Marks	СО
a.	What are majority and minority charge carriers in semiconductors?	2	1
b.	What is tunneling phenomena in TUNNEL diode?	2	1
c.	If β =50, I _E =1.8mA and I _{CO} =12µA, Calculate I _C and I _B when transistor is	2	2
	used in CE configuration.		
d.	How FET differs from the BJT?	2	2
e.	Determine CMRR for an OPAMP for input voltage $V_1=150\mu V$ and	2	3
	$V_2=140\mu V$ and the output voltage is 45.8mV.		
f.	Explain the concept of Virtual ground in an OPAMP.	2	3
g.	What is the use of trigger circuit in CRO?	2	4
h.	Enlist the advantages of DMM.	2	4
i.	What is need of modulation in communication system?	2	5
j.	What are the sidebands in AM wave?	2	5

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	СО
a.	(i) Draw and explain the operation of center tapped full wave rectifier	10	1
	with input and output waveforms. Calculate ripple factor.		
	(ii) Draw the circuit for the given input and output as shown in fig (1)		
	$\begin{array}{c} V_{\text{in}} \\ 10V \\ 0 \\ 10V \end{array} \\ t \\ 10V \end{array} \\ \hline \\ Circuit using \\ Ideal Diode \\ 2V \\ \hline \\ \\ 2V \\ \hline \\ \\ Fig (1) \end{array}$		
b.	Draw and explain the Common Emitter circuit of a transistor. Sketch and	10	2
	explain its input and output characteristics.		
c.	With suitable circuit diagram obtain the expression for output voltage for	10	3
	summer OPAMP. Calculate V_0 for the given network in fig (2).		
	Fig (2)		
d.	(i) Draw the block diagram of CRO and explain the function of each block.	10	4
	(ii) With the help of suitable block diagram, explain the working Principle of Digital Volt Meter (DVM).		
I		l	L

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ELECTRONICS ENGG

e.	(i) Explain the amplitude modulation. Obtain an expression for an AM	10	5
	wave.		
	(ii) A certain transmitter radiates 9 kW with the carrier unmodulated, and		
	10.125 kW when the carrier is sinusoidally modulated. Calculate the		
	modulation index, percent of modulation. If another sine wave,		
	corresponding to 40 percent modulation, is transmitted		
	simultaneously, determine the total radiated power.		

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Draw and explain the circuit diagram for negative and positive clamper	10	1
	circuits with input and output waveforms.		
b.	Draw and determine the output waveforms for the given network as	10	1
	shown in fig (3)		
	$\begin{array}{c} V_{\text{in}} \\ +20V \\ 0 \\ -20V \end{array} t V_{\text{in}} \\ \hline \\ -20V \end{array} \xrightarrow{C} V_{0} \\ \hline \\ Fig. (3) \end{array}$		

4. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	A CE amplifier has a load resistance of $3K\Omega$, $R_1=8.1K\Omega$, $R_2=2.2K\Omega$,	10	2
	$R_{C}=2./K\Omega_{2}$, $R_{E}=1.8$ K\Omega_{2}, and $V_{CC}=20V$. The <i>h</i> parameters are $h_{ie}=4K\Omega_{2}$, $h_{re}=7x10^{-4}$, $h_{fe}=135$ and $h_{oe}=25\mu$ A/V. Draw hybrid model and determine		
	$Z_i, Z_O, A_i, A_V.$		
b.	With neat sketch describe the construction of an p channel JFET.	10	2
	Explain its principle of operation and draw its drain and transfer		
	characteristics.		

5. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Enlist the characteristics of ideal OPAMP. Obtain the expression for voltage gain in non inverting OPAMP. Calculate the output voltage for the network as shown in fig (4).	10	3
	$V_{2} \xrightarrow{150 \text{ k}\Omega} V_{0}$ $V_{1} \xrightarrow{30 \text{ k}\Omega} Fig. (4)$		

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 ELECTRONICS ENGG

b.	Explain unity gain OPAMP. With suitable circuit diagram obtain the	10	3
	expression for integrator and differentiator OPAMP.		

6. Attempt any *one* part of the following:

Q no.	Question	Marks	CO
a.	Draw the block diagram of digital multimeter and explain how it calculates various parameters?	10	4
b.	What is electron gun in CRO? How Phase and frequencies are measured	10	4
	using CRO?		

7. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	Sketch the block diagram of communication systems and explain the	10	5
	function of each block.		
b.	What is Angle modulation? Derive an expression for an FM wave with	10	5
	sinusoidal modulation.		