

					Pri	inted	l Pa	ge: 1	of 4	
				Sub	ject	Cod	le: K	OE	031	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

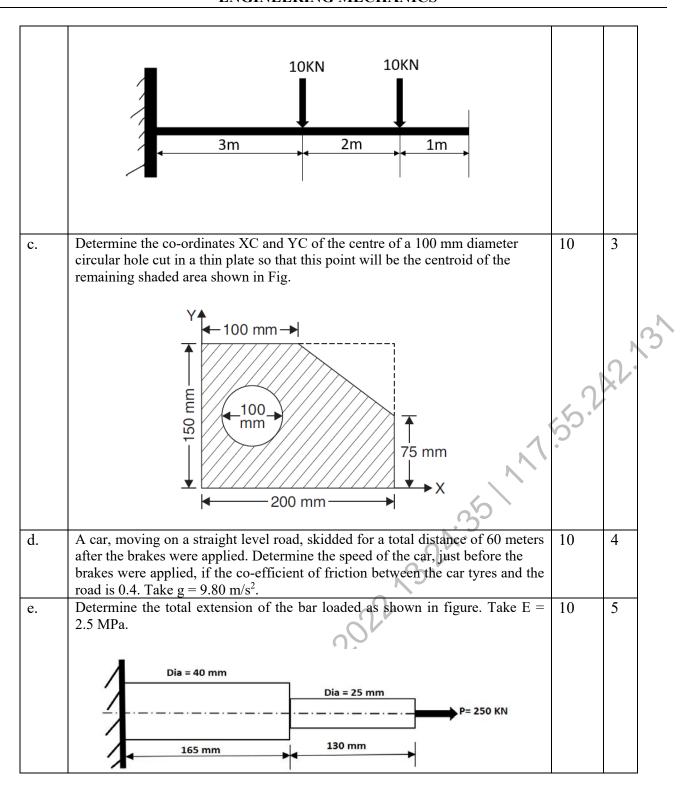
Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x 10 =	= 20
Q no.	Question	Marks	СО
a.	What is the difference between collinear and concurrent forces?	2	1
b.	Define the Limiting angle of friction.	2	1
c.	What is truss? Explain its types.	2	2
d.	Define the types of loads & supports in a beam.	2	2
e.	Define Mass moment of inertia & Area moment of inertia.	2	3
f.	What do you mean by types of motion?	2	3
g.	Explain D'Alembert's principle with suitable example.	2	4
h.	Define the longitudinal & lateral strain.	2	4
i.	What do you mean by pure bending in beams?	2	5
j.	Define a shaft & torsional rigidity.	2	5

SECTION B

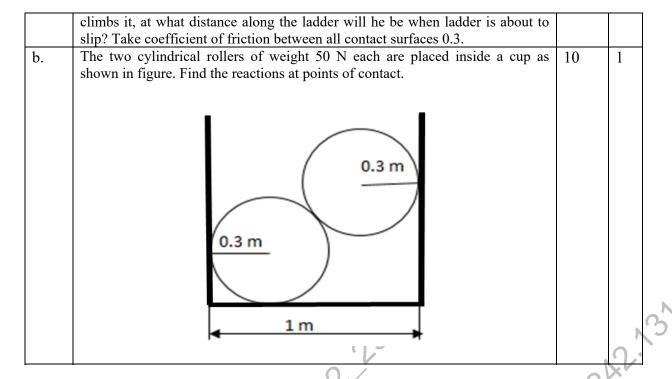

2. Attempt any three of the following:

Q no.	Question	Marks	CO
a.	Four forces act tangentially to a circle of radius 200 mm as shown in figure. Find the magnitude, inclination & distance of the resultant from center of circle.		1
b.	Draw the shear force & bending moment diagram for a loaded beam as shown in figure.	10	2

Printed Page: 2 of 4
Subject Code: KOE031
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

SECTION C


3. Attempt any one part of the following:

<u>J.</u>	Attempt any one part of the following.		
Q no.	Question	Marks	CO
a.	A ladder 7 m long rests against a vertical wall with which is makes an angle	10	1
	45° & resting on a floor. If a man whose weight is one half of that the ladder		

Printed Page: 3 of 4
Subject Code: KOE031
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

4. Attempt any *one* part of the following:

4.	Attempt any <i>one</i> part of the following:	
Q no.	Question Marks	CO
a.	Determine the magnitude and nature of forces in members EF, FC and CB of the truss shown in figure.	2
b.	Draw the shear force & bending moment diagram for the beam shown in figure also find out the value of maximum bending moment & position of point of contraflexure. 10 3KN/m 2m 1m	2

Printed Page: 4 of 4 Subject Code: KOE031 Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 **ENGINEERING MECHANICS**

5 Attempt any one part of the following:

ა.	Attempt any one part of the following.		
Q no.	Question	Marks	CO
a.	Determine the moment of inertia of the 'L' section with respect to centroidal X-X axis. Section as shown in figure.	10	3
b.	Derive an expression for mass moment of inertia about axis of symmetry for right solid circular cone.	a 10	3

6.	Attempt any <i>one</i> part of the following:		- 1
Q no.	Question	Marks	CO
a.	The equation of motion of a particle moving in a straight line is given by:	10	4
	$s = 9t + 7t^2 - 1.5t^3$, where s is the total, distance covered from the starting point in meters at the end of t seconds. Find the following:	3	
b.	Two bodies A and B of masses 5 kg and 20 kg are connected by an inclined string. A horizontal force P of 100 N is applied to block B. Calculate the tension in the string and acceleration of the system. Take coefficient of friction for all surfaces as 0.25. Refer figure.	10	4
	B P = 100 N		

7. Attempt any one part of the following:

	recempe any one part of the following.		
Q no.	Question	Marks	CO
a.	Derive the Bending equation for pure bending in beams with assumptions. Also	10	5
	define the neutral axis & section modulus for a beam.		
b.	Calculate the suitable diameter for a solid circular shaft to transmit 60 kW power at 200 rpm, if the twist is not to exceed 2^0 in 3 m length of the shaft and maximum shear stress is limited to 70 MN/m^2 . Take shear modulus $G = 90 \text{ GPa}$.	10	5