Printed Page 1 of 2

Paper Id:

130508

Roll No:						

B TECH

(SEM V) THEORY EXAMINATION 2019-20 DIGITAL SIGNAL PROCESSING

Time: 3 Hours

Total Marks: 70

Notes:

• Attempt all Sections. Assume any missing data.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Sub Code: REC503

a.	Define linear convolution and its physical significance.
b.	What are advantages & disadvantages of window methods?
c.	What are the advantages of representing the digital system in block diagram form?
d.	Write the expression for Blackman and Bartlett window.
e.	If $x(n) = \{4,3,5,7,4,6\}$ & up sampling factor=3, then what will be the value of up sampler output.
f.	If $x(n) = \{1,5,2,3\}$ what will be $x((3-n))_4$?
g.	Write down the advantages & disadvantages of bilinear transformation.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

Obtain the parallel form realization for the system function given below:
$H(z) = \frac{(1+0.25z^{-1})}{(1+0.5z^{-1})(1+0.5z^{-1}+0.25z^{-2})}$
$\frac{11(Z)}{(1+0.5z^{-1})(1+0.5z^{-1}+0.25z^{-2})}$
What the relation between DTFT and DFT. Explain the properties of DFT with examples.
Explain the Gibbs phenomenon. Find the response of rectangular window and explain it.
Find the 4-pointcircular convolution of $x(n)$ an $h(n)$ given by $x(n) = \{1,1,1,1\}$ & $h(n) = \{1,0,1,0\}$ using radix-2 DIF-FFT algorithm.
The system function of analog filter is given by
$H(s) = \frac{(s+0.1)}{(s+0.1)^2 + 16}$
$H(s) = \frac{1}{(s+0.1)^2+16}$
Obtain the system function of digital filter by using impulse invariant technique. Assume T=1sec.

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

(a)	Obtain the ladder structure of a given transfer function:
	$2 + 8z^{-1} + 6z^{-2}$
	$H(z) = \frac{z + 3z + 3z}{1 + 8z^{-1} + 12z^{-2}}$
(b)	Obtain a linear phase and cascade realization of the system
	$H(z) = (1+0.5z^{-1}+z^{-2})(1+0.5z^{-1}+z^{-2})$

4. Attempt any one part of the following:

 $7 \times 1 = 7$

Write a short note on (i) Sub-band coding of speech signal (ii) Quadrature mirror (a) filter.

Explain the phenomenon decimation and interpolation by suitable example. (b)