Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22
DIGITAL ELECTRONICS
Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO	
Q1(a)	How are binary digits used to express the integer and fractional parts of a number?	1
Q1(b)	Explain how BCD addition is carried out.	1
Q1(c)	Implement a 4:1 multiplexer using 2:1 multiplexer.	2
Q1(d)	Demultiplexer is decoder circuit with an additional enabling input. Do you agree with the above statement?	2
Q1(e)	Give the difference between positive and negative edge triggering.	3
Q1(f)	A flip-flop has 5 ns delay from the time the clock edge occurs to the time the output is complemented. What is the maximum delay in a 10-bit binary ripple counter that uses these flip-flops? What is the maximum frequency the counter can operate reliably?	3
Q1(g)	Define critical race and non-critical race.	4
Q1(h)	What is the significance of state assignment?	4
Q1(i)	Why is ECL logic faster than TTL?	5
Q1(j)	Compare static RAM and dynamic RAM.	5.

| SECTION-B Attempt ANY THREE of the following Questions | Marks(3X10=30) | CO |
| :--- | :--- | :---: | :---: |
| Q2(a) | Realize a 3-input gate using 2-input gates for the following gates:
 (i) AND (ii) OR (iii) NAND (iv) NOR | 1 |
| Q2(b) | (i)Implement a full subtractor circuit using only NAND gates.
 (ii)Using 4:1 multiplexers, implement the following function
 F (A, B, C) $=\sum \mathrm{m}(0,2,3,5,7)$ | 2 |
| Q2(c) | Define bi-directional shift register. Draw and explain 3 bit. bí-directional shift
 register using D flip-flop. | 3 |
| Q2(d) | Design a primitive state diagram and state table for a circuit with two asynchronous
 inputs (X and Y) and one output Z. This circuit is to be designed so that if any
 change takes place on X and Y, Z is to change states. Assume initially that the two
 inputs never change simultaneously. | 4 |
| Q2(e) | (i) Write a note on interfacing TTL with CMOS.
 (ii) Explain the parameters used to characterize logic families. | 5 |

SECTION-C Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q3(a)	Minimize the following using Tabular method F(A,B,C,D,E $=\sum \mathrm{m}(0,1,2,3,6,7,14,15,16,19,31)$	1
Q3(b)	(i) Reduce the expression $\mathrm{f}=\sum \mathrm{m}(0,1,2,3,5,7,8,9,10,12,13)$ using K-maps and implement the real minimal expression using NAND logic. (ii) Design the logic circuit for a BCD to decimal decoder.	1

SECTION-C Attempt ANY ONE following Question \quad Marks $(\mathbf{1 X 1 0}=\mathbf{1 0})$	CO	
Q4(a)	Construct BCD adder using two 4-bit binary parallel adder and logic gates.	2
Q4(b)	Explain 4-bit magnitude comparator.	2

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2021-22

DIGITAL ELECTRONICS

SECTION-C Attempt ANY ONE following Question Marks (1X10=10) CO
Q7(a) Design a BCD to Excess-3 code converter and implement it using a suitable PLA.
Q7(b) Draw a neat diagram of TTL NAND gate and explain its operation.

