

						Pri	ntec	l Pa	ge: 1	of 2
				Subject Code: KOE039						
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A Attempt All of the following Questions in brief Marks(10X2=20)	CO		
Q1(a)	Q1(a) How are binary digits used to express the integer and fractional parts of a number?			
Q1(b)	Q1(b) Explain how BCD addition is carried out.			
Q1(c)	Implement a 4:1 multiplexer using 2:1 multiplexer.	2		
Q1(d)	Demultiplexer is decoder circuit with an additional enabling input. Do you agree			
	with the above statement?			
Q1(e)	Give the difference between positive and negative edge triggering.			
Q1(f)	A flip-flop has 5 ns delay from the time the clock edge occurs to the time the output			
	is complemented. What is the maximum delay in a 10-bit binary ripple counter that			
	uses these flip-flops? What is the maximum frequency the counter can operate			
	reliably?			
Q1(g)	Define critical race and non-critical race.	4		
Q1(h)	What is the significance of state assignment?	4		
Q1(i)	Why is ECL logic faster than TTL?	5		
Q1(j)	Compare static RAM and dynamic RAM.	5.		

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)	Realize a	3-input gate using 2-input gates for the following gat	es:	1
		(i) AND (ii) OR (iii) NAND (iv) NOR	1.3	
Q2(b)	(i)Implem	ent a full subtractor circuit using only NAND gates.		2
	(ii)Using	4:1 multiplexers, implement the following function		
		$F(A, B, C) = \sum m(0,2,3,5,7)$		
Q2(c)	Define b	i-directional shift register. Draw and explain 3 b	it bi-directional shift	3
	register us	sing D flip-flop.	*	
Q2(d)	Design a	primitive state diagram and state table for a circuit v	vith two asynchronous	4
	inputs (X	and Y) and one output Z. This circuit is to be de	esigned so that if any	
	change ta	kes place on X and Y, Z is to change states. Assum-	e initially that the two	
	inputs nev	ver change simultaneously.		
Q2(e)	(i) Write a	a note on interfacing TTL with CMOS.		5
	(ii) Expla	in the parameters used to characterize logic families.		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1 X10=10)	CO
Q3(a)	Minimize	the following using Tabular method		1
	$F(A,B,C,D,E) = \sum m(0,1,2,3,6,7,14,15,16,19,31)$			
Q3(b)	(i) Reduc	e the expression $f = \sum_{i=1}^{n} m_i(0,1,2,3,5,7,8,9,10,12,11,12,12,12,12,12,12,12,12,12,12,12,$	13) using K-maps and	1
		t the real minimal expression using NAND logic.		
	(ii) Design	n the logic circuit for a BCD to decimal decoder.		

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)	CO
Q4(a) Construct BCD adder using two 4-bit binary parallel adder and logic gates.				
Q4(b)	Explain 4-	bit magnitude comparator.		2

Printed Page: 2 of 2
Subject Code: KOE039
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
Q7(a) Design a BCD to Excess-3 code converter and implement it using a suitable PLA.				
Q7(b) Draw a 1	eat diagram of TTL NAND gate and explain its opera	ation.	5	

to 1. Find a way to remove the hazard by adding one more OR gate.