Printed Page 1 of 2

Paper Id: 110302

Roll No: Sub Code: RCS302

B. TECH.

(SEM III) THEORY EXAMINATION 2019-20 COMPUTER ORGANIZATION AND ARCHITECTURE

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

 $2 \times 7 = 14$

- a. Define Speedup Performance Laws.
- b. Differentiate Linear and Nonlinear Pipeline Processors.
- c. Differentiate interrupts and exceptions.
- d. Show the bit configuration of 16 bit register when its contents represent the decimal equivalent of 250 in BCD.
- e. Define the role of MIMD in computer architecture.
- f. Define horizontal and vertical microprogramming.
- g. What do you understand by locality of reference?

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

- a. Explain IEEE standard for floating point representation with example.
- b. What is associative memory? Explain with the help of a block diagram. In addition, mention the situation in which associative memory can be effective utilized.
- c. What do you mean by processor organization? Explain various types of processor organization.
- d. What do you mean by high-speed adder? Discuss design of higher speed adders using block diagram.
- e. Explain the different between vectored and non-vectored interrupt. Explain using example of each.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Represent $(-456.1234)_{10}$ in single precision and double precision format.
- (b) Explain the bus architecture with its types. Also, discuss the I/O bus architecture with block diagram.

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Register A holds the 8-bit binary 1111111. Determine the B operand and the logic micro operation to be performed in order to change the value in A to
 - i. 01101111
 - ii. 11111100
- (b) Differentiate between Synchronous & asynchronous communication taking a suitable example.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) Write a program to evaluate the arithmetic statement

$$X = (A - B + C \times (D \times E - F))/(G + H \times K)$$

- i. Using a general register computer with three address instructions.
- ii. Using an accumulator type computer with one address instruction.

Printed Page		Sub Code: RCs												
Paper Id:	110302	Roll No:												

(b) Discuss Cache memories. What are the design issues? How performance is improved using the cache memories?

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) A bit computer has 16-bit address bus. The first 15 lines of the address are used to select a bank of 32KB of memory. The higher order bit of the address is used to select a register, which receives the contents of the data bus. Explain How this configuration can be used to extend the memory capacity of the system to eight banks of 32KB each, for a total of 256 bytes of memory.
- (b) List and explain the Modes of Data Transfer using block diagram.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Show the systematic multiplication process $(20) \times (-19)$ using Booth's Algorithm.
- (b) Explain and classify the Architectural Classification Schemes and differentiate between them.