Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22
ANALOG ELECTRONICS
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

$$
2 * 10=20
$$

Qno	Questions	CO
(a)	Write name of any four diode circuits and draw low frequency hybrid- π model of BJT.	1
(b)	What is objective of different biasing schemes for BJT and FET amplifier?	1
(c)	Define different parameters used in high frequency hybrid- π model.	2
(d)	What is effect of negative feedback on gain and bandwidth?	2
(e)	In an RC phase shift oscillator, R $=200 \mathrm{~K} \Omega$ and C $=200 \mathrm{pF}$. Find the frequency of BJT -based oscillator.	3
(f)	Explain Barkhausen criterion.	3
(g)	Differentiate between CMRR and ICMR for a differential amplifier.	4
(h)	Determine the range of differential-mode operation of MOS differential Pair of overdrive voltage (Vov) is 1V,	4
(i)	Draw the circuit of precision half wave rectifier and its ideal transfer characteristic.	5
(j)	What are the limitations of an ideal integrator?	5

SECTION B

2. Attempt any three of the following:
$10 * 3=30$

Qno	Questions	CO
(a)	Draw the small signal AC equivalent circuit of a Common Drain FET amplifier. Derive the expression for voltage gain, input impedance and output impedance.	1
(b)	Why class AB power amplifiers are preferred over Class B operations? A transformer-coupled class A power amplifier supplies to an 80Ω load connected across the secondary of a step-down transformer having a turn-ratio 5:1. Determine the maximum power output for a zero signal collector of 120 mA.	2
(c)	Draw the neat circuit diagram of Re phase shift oscillator and derive its frequency of oscillations.	3
(d)	Discuss the basic topology of current mirror and its variants with V-I characteristics.	4
(e)	Sketch the three-input inverting summing circuit and derive an expression for the output voltage. Find out the voltages V2 and V3 of the given network.	5

Roll No: \square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

ANALOG ELECTRONICS

SECTION C
3. Attempt any one part of the following: $\mathbf{1 0 * 1 = 1 0}$

Qno	Questions	CO
(a)	What is the significance of stability factor in transistor operation? A voltage divider circuit has $\mathrm{R}_{1}=39 \mathrm{~K} \Omega, \mathrm{R}_{2}=82 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=3.3 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=1$ $\mathrm{~K} \Omega$ and VCC $=18 \mathrm{~V}$.The silicon transistor used has $\beta=120$. Find Q-point and stability factor.	1
(b)	Why does gain of amplifier falls at low and high frequencies? Specify different schemes of coupling in multistage amplifiers. Compare their merits and demerits.	1

4. Attempt any one part of the following:

| Qno | Questions | CO |
| :--- | :--- | :---: | :---: |
| (a) | Find the midband gain and the upper 3-db frequency of the common-
 emitter amplifier shown in given figure for the following case: $\mathrm{V}_{\mathrm{CC}}=$ | |
| $\mathrm{V}_{\mathrm{EE}}=10 \mathrm{~V}, \mathrm{I}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{B}}=100 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=8 \mathrm{~K} \Omega, \mathrm{Rsig}=5 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=5$ | | |,

\square

BTECH

(SEM III) THEORY EXAMINATION 2021-22

ANALOG ELECTRONICS

5. Attempt any one part of the following:

$$
10 * 1=10
$$

Qno	Questions	CO
(a)	Draw the circuit of Wien-bridge oscillator and discuss its basic principle of operation. Also determine frequency of oscillation.	3
(b)	With a neat circuit diagram, explain the operation of Colpitts oscillator. Derive the expression for frequency of oscillation and the minimum gain for sustained oscillations.	3

6. Attempt any one part of the following: $10 * 1=10$

| Qno | Questions | CO |
| :---: | :--- | :---: | :---: |
| (a) | Write short notes on any two of the following:
 (i)Minimum sustainable voltage(VON)
 (ii)Maximum usable load
 (iii) Differential gain and Common mode gain | 4 |
| (b)Give the differential half-circuit of the differential amplifier shown in
 given figure. Assume that Q1 and Q2 are perfectly matched. Neglecting
 ro, determine the differential voltage gain. | 4 | |

7. Attempt any one part of the following:
$10 * 1=10$

Qno	Questions	CO
(a)	Explain how a Schmitt Trigger circuit works with a neat diagram. Design an Schmitt trigger with VUT $=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{LT}}=-1 \mathrm{~V}$. Assume \pm Vsat $=$ $\pm 13 \mathrm{~V}$	5
(b)	How is order of filter decided? Design a wide band pass filter to meet the following specifications: $\mathrm{f}_{1}=5 \mathrm{kHz}, \mathrm{f}_{2}=15 \mathrm{kHz}$ and Pass band gain=2.	5

