

				Subject Code: KCE073						
Roll No:										

B.TECH. (SEM VII) THEORY EXAMINATION 2021-22 **ADVANCED CONCRETE DESIGN**

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10 =	= 20	
Q no.	Question	Marks	CO	
a.	Define liquid retaining structures.	2	1	
b.	What is approximate method for design of tank?	2	1	
с.	Define INTZ tanks.	2	2	
d.	Define top dome for overhead tanks.	2	2	
e.	What is prestressing?	2	3	
f.	Define degree of prestressing.	2	3	
g.	What are ultimate tensile strength?	2	4	
h.	Define kern distance.	2	4	
i.	Define deep beams.	2	5	
j.	Where Corbel are used?	2	5	N
	SECTION B		N	ઝે
2.	Attempt any <i>three</i> of the following:		$\underline{\mathcal{D}}$	-
Q no.	Question	Marks	CO	
a.	Find out the earth pressure on tank when wall with moist back fill when the tank is empty and underground	10	1	

SECTION B

2.	Attempt any <i>three</i> of the following:		9
Q no.	Question	Marks	CO
a.	Find out the earth pressure on tank when wall with moist back fill when the tank is empty and underground.	10	1
b.	Analyze the overhead tanks for Wind forces.	•10	2
c.	Write the advantages of Prestressed concrete over Reinforced concrete.	10	3
d.	In a post tensioned beam the cable is subjected to 1150 N/mm ² . If the slip at the jacking end is found to be 3.50 m. Find the percentage loss of stress due to this case if the beam is 20 m long.	10	4
e.	What situation when deep beams are used ? And write empirical expressions for lever arm (z).	10	5

SECTION C

Attempt any *one* part of the following: 3.

Q no.		Question	Marks	CO
a.		diameter 35 m has walls 5.25 m tall above its base oncrete and Fe 415 steel design the tank.	10	1
b.	Find the active ear soil.	th pressure for the tank if back fill is saturated sandy	10	1

4. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Find the Bending moment for the base slab of tank situated above	10	2
	ground level.		
b.	A reinforced concrete water tank is 6mx 3 m with a maximum depth of	10	2
	2.5m . 150 mm x 150 mm splays are provided at the junction of walls		
	and base slab . The tank is supported on brick masonry walls all round.		
	Design the tank use M20 concrete and mild steel reinforcement.		

					Pri	intec	l Pa	ge: 2	2 of 2	
				Sub	ject	Cod	le: ŀ	KCE	2073	
No:										

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Write the basic concepts of Prestressed concrete.	10	3
b.	A rectangular concrete beam 300 mm x 500 mm with a span of 7.5m is prestressed by a straight cable carrying an effective prestressing force of 400 kN, located at an eccentricity of 50 mm. If the beam supports a live load of 2.5 kN/m, calculate the resultant stresses at the central cross – section of the beam.		3

Roll

6. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Write the short notes on following ; (i) Loss due to shrinkage of concrete	10	4
	(ii)Loss due to friction for curvature effect.		
b.	A pretensioned concrete beam , 150 mm wide and 300 mmm deep , is	10	4
	prestressed by straight wires carrying a initial force of 150 kN at an		
	eccentricity of 50 mm. The values $E_{\rm s}$ and $E_{\rm C}$ are 210 kN/m² and 35		
	kN/m ² respectively. Estimate the percentage loss of stress in steel due to		
	elastic deformation of concrete if the area of steel wires is 188 mm ² .		
			N
7.	Attempt any one part of the following:		
0 no	Question	Marks	CO

Attempt any one part of the following: 7.

1.	Attempt any one part of the following.		
Q no.	Question	Marks	CO
a.	A corbel attached to a 250 mm x 250 mm R.C.C. column , carries a factored load of 400 kN at a distance of 170 mm from the face of	10	5
	column. Design the corbel using M25 concrete.	5	
b.	Design a deep beam 300 mm wide and 4 m deep, simply supported over	*10	5
	a span of 6 m. The beam carries a live load of 160 kN/m at the service		
	state and is supported on walls of 600 mm thick on each end . Use M20		
	concrete and Fe415 steel having permissible tensile stress of 230 N/mm ²		
	65-Jan 2022		