ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

$$
2 \times 10=20
$$

Q no	Questions	CO
(a)	What is the difference between collinear and concurrent forces?	1
(b)	Define the Limiting angle of friction.	1
(c)	Define the angle of repose	2
(d)	Explain the types of beams.	2
(e)	What is the difference between mass moment of Inertia and area moment of Inertia	3
(f)	Define the Poler moment of Inertia.	3
(g)	Explain D'Alembert's principle.	4
(h)	What do you understand by relative velocity?	4
(i)	Define the longitudinal stress	5
(j)	Define the shaft and its applications.	5

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

Qno	Questions							CO
(a)	An electric light fixture weighing 15 N hangs from a point C , by two strings AC and BC . AC is inclined at 60° to the horizontal and BC at 45° to the vertical as shown in Fig. determine the forces in the strings AC and BC .							

\square

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions	CO
(a)	Determine the magnitude, direction, and position of a single force P, which keeps in equilibrium the system of forces acting on the corners of a rectangular block as shown in Fig. The position of force P may be stated by reference to axes with origin O and coinciding with the edges of the block.	1

4. Attempt any one part of the following:
$10 \times 1=10$

Qno	Questions		
(a)	Draw the shear force \& bending moment diagram fora Joâded beam as shown in figure.	2	
(b)	Derive the relationship between Load intensity, Shear force and Bending moment for a beam.	2	

5. Attempt any one part of the following:

Qno	Questions	CO
(a)	Derive an expression for mass moment of inertia about axis of symmetry for a right solid circular cylinder.	3
(b)	Determine the moment of inertia of the section about an axis passing through the base BC of a triangular section shown in Fig.	3

6. Attempt any one part of the following:
$10 \times 1=10$

7. Attempt any one part of the following:

$$
10 \times 1=10
$$

Qno	Questions	CO
(a)	Derive the relation for a cireular shaft when subjected to torsion as given below. $T / J=G \varnothing / L=T / R$ were $\mathrm{T}=$ Torque transmitted, $\mathrm{J}=$ Polar moment of inertia, $\mathrm{T}=$ Max. shear stress, $\mathrm{R}=$ Radius of the shaft, $\mathrm{G}=$ Modulus rigidity, $\varnothing=$ Angle of twist, and $\mathrm{L}=$ Length of the shaft.	5
(b)	A solid shaft of 150 mm diameter is used to transmit torque. Find the maximum torque transmitted by the shaft if the maximum shear stress induced to the shaft is $45 \mathrm{~N} / \mathrm{mm}^{2}$.	5

