Roll No: \square
BTECH
(SEM VI) THEORY EXAMINATION 2021-22
DESIGN AND ANALYSIS OF ALGORITHM
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

Qno	Questions	CO
(a)	Explain the reason behind the call of Heapify procedure only on first half elements of the given array while building a heap.	1
(b)	State the recurrence relation of Tower of Hanoi problem and solve it.	1
(c)	Discuss the properties of Binomial Trees.	2
(d)	Prove that a RB tree with n internal nodes has height atmost 2lg(n+1).	2
(e)	Discuss that why a shortest path cannot contain a cycle?	3
(f)	Differentiate between adjacency list and adjacency matrix representation of graphs.	3
(g)	What is branch and bound technique?	4
(h)	Differentiate between Dynamic Programming and Divide \& Conquer approach.	4
(i)	Write down complexity of naïve string matching algorithm.	5
(j)	Differentiate between NP Hard and NP Complete problems.	5.

SECTION B

2. Attempt any three of the following:
$10 * 3=30$

Qno	Questions	CO
(a)	Illustrate the working of the counting sort algorithm on array A: $\{2,0$, $2,3,5,7,6,3,0,2,1,3\}$.	1
(b)	Show the final tree after inserting the following keys 22, 23, 44, 16, 43, 26, $11,25,36,33,18$, in initially empty R-B tree in same sequence.	2
(c)	Define minimum cost spanning tree. Explain Prim's algorithm for minimum spanning tree of a graph. Also write its Time-Complexity.	3
(d)	Illustrate the concept of backtracking on following sum-of-subset problem, $n=4$, Sum i.e. $m=13$, and $w t_{1}=3, w t_{2}=4, w t_{3}=$ $5, w t_{4}=7$ and $w t_{5}=8$. by building the search tree.	4
(e)	What is an approximation algorithm? What is meant by P(n) approximation algorithms? Discuss approximation algorithm for vertex cover problem.	5

SECTION C

3. Attempt any one part of the following:
$10 * \mathbf{1}=\mathbf{1 0}$

Qno	Questions	CO
(a)	Write Merge sort algorithm and discuss its time complexity.	1
(b)	Apply quick sort to sort the keys as $12,13,10,5,7,3,2,17,23,16 . ~ A l s o ~$ write its algorithm and discuss the running time of the quick sort.	1

Roll No:

\square
BTECH
(SEM VI) THEORY EXAMINATION 2021-22
DESIGN AND ANALYSIS OF ALGORITHM
4. Attempt any one part of the following: $\quad 10 \boldsymbol{*}=\mathbf{1 0}$

Qno	Questions	CO
(a)	Illustrate the concept of trie data structure by constructing trie after inserting following strings, "string, sting, streak, steak, stride, step, steep," in order and then delete "step, streak" in order.	2
(b)	Write the characteristics of a B-Tree of degree t. Create B-Tree of t=3 from the following lists of data items: $20,30,35,85,10,55,60,25$, $5,65,70,75,15,40,50,90,45$.	2

5. Attempt any one part of the following:
$10 * 1=10$

Qno	Questions	CO
(a)	Define a Knapsack Problem and describe its formulation. Find the optimal solution by using Greedy Method to Knapsack Instance $\mathrm{n}=5$, w $=[20,30,40,10,7], \mathrm{P}=[700,800,900,100,600]$ and Capacity (C) of Knapsack is 80.	3
(b)	Show all steps of Strassen's matrix multiplication algorithm using suitable example.	3

6. Attempt any one part of the following:
$10 * 1=10$

| Qno | Questions | CO |
| :--- | :--- | :--- | :--- |
| (a) | Define dynamic programming. How this approach different from
 recursion? Explain with example. | 4 |
| (b) | Design an algorithm based upon dynamic programming for Longest
 Common Subsequence(LCS) and then calculate LCS of sequence $\mathrm{X}=$
 $<\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{B}, \mathrm{D}, \mathrm{A}, \mathrm{B}>$ and $\mathrm{Y}=\angle \mathrm{B}, \mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{A}>$. | 4 |

7. Attempt any one part of the following:
$10 * 1=10$

Qno	Questions	CO
(a)	Calculate the spurious hits in the text T $=3141592653589793$, pattern $\mathrm{P}=26$ and working modulo $\mathrm{q}=11$, using Rabin-Karp string matching algorithm after writing algorithm for the same.	5
(b)	Demonstrate the concept of FFT (Fast Fourier Transformation) with the help of an example.	5

