

1.

2.

				Printed Page: 1 of 3						
				Sub	ject	Coc	le: I	KEC	C602	,
Roll No:										

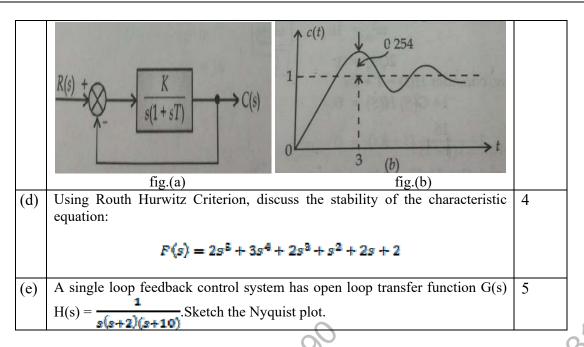
BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

Attempt all questions in brief. 2*10					
Q.	Questions	CO			
No					
(a)	Compare any four differences between close loop and open loop system.	1			
(b)	Draw the Elementary Block Diagram of open loop and close loop system.	1			
(c)	Enlist the condition for a system to be controllable.	2			
(d)	List any two advantages of space state model over transfer function model.	2			
(e)	Define Settling time and Maximum peak overshoot.	3			
(f)	Define Rise time and Peak Time.	3			
(g)	Illustrate how the location of poles of a system related to stability.	4			
(h)	Describe the Angle of Departure.	4			
(i)	Define Gain Cross Over Frequency.	5			
(j)	Enlist the significant of Polar plot.	5			


SECTION B

	SECTION B	NV
tten	npt any three of the following:	*3 = 30
Q. No	Questions	CO
(a)	Obtain overall Transfer function for the given block diagram shown in Figure using Block reduction Method: $ \begin{array}{c} R(s) \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	1
(b)	Construct the state space model for the system described by the differential equation below. The output matrix should be independent of input and be able to measure each state variable. $\frac{d^3y}{dt^3} + 6 \frac{d^3y}{dt^2} + 11 \frac{dy}{dt} + 6y = 4u(t)$	2
(c)	The system shown in fig(a) when subjected to a unit step input, the output response is shown in fig(b). Determine the value of K & T from the response	3

Printed Page: 2 of 3
Subject Code: KEC602
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

SECTION (

3. Attempt any *one* part of the following:

10*1 = 10

Q.	Questions	CO
No		1
(a)	For the system shown in Figure, obtain the transfer function by signal flow graph method.	1
(b)	Using Mason's gain formula, evaluate the overall transfer function: G_4 G_2 G_3 G_4 G	1

4. Attempt any one part of the following:

Q. Questions
No

(a) A single input single-output system has transfer function, enlist the state equations, and draw the state diagram.

Printed Page: 3 of 3
Subject Code: KEC602
Roll No:

BTECH (SEM VI) THEORY EXAMINATION 2021-22 CONTROL SYSTEM

	$\frac{Y(s)}{U(s)} = \frac{1}{S^3 + 7S^2 + 14S + 8}$	
(b)	Examine the Controllability and Observability of the following system:	2
	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} S = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$	

Q.	Questions	CO
No	Questions	
(a)	The open loop transfer function of a unity feedback system is given by $G(S) = \frac{K}{S(1+ST)}$ Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%.	3
(b)	Evaluate the unit step response with proper derivation for an under damped 2 nd order system.	30

Q. No	Questions	СО
(a)	For a unity feedback system of O.L.T.F is given by $G(S)H(S) = \frac{K}{S(S+1)(S+2)(S+3)}$ a) Sketch the root locus for $0 \le K \le \infty$. b) At what value of K, the system become unstable.	4
(b)	For a unity feedback system of O.L.T.F is given by $G(S)H(S) = \frac{K}{S(S+6)(S^2+4S+13)}$	4

7.	Attem	upt any <i>one</i> part of the following:	*1 = 10
	Q. No	Questions	СО
	(a)	Sketch the Bode Plot for the given system and comment on stability of the used systems: $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$	5
	(b)	S Sketch the Bode Plot for the given system and comment on stability of the used systems: $G(s)H(s) = \frac{30}{s(1+0.5s)(1+0.08s)}$	5